Let’s design a hybrid workflow that combines classic monitoring (Prometheus + Grafana) with AI-driven orchestration (LangChain + LangGraph). This will give you a system that not only collects metrics but can also reason about anomalies, generate insights, and trigger actions.


1. Core Monitoring Stack

Prometheus

  • Scrapes metrics from your services, infrastructure, and exporters.
  • Stores them in a time-series database.
  • Provides alerting rules (via Alertmanager).

Example prometheus.yml scrape config:

scrape_configs:
  - job_name: 'node_exporter'
    static_configs:
      - targets: ['localhost:9100']
  - job_name: 'app_service'
    static_configs:
      - targets: ['app:8080']

Grafana

  • Connects to Prometheus as a data source.
  • Provides dashboards for CPU, memory, request latency, error rates, etc.
  • Can visualize anomaly scores pushed from LangGraph.

Example datasource config (provisioning/datasources/datasource.yml):

apiVersion: 1
datasources:
- name: Prometheus
  type: prometheus
  access: proxy
  url: http://prometheus:9090

2. AI Orchestration Layer

We insert LangChain + LangGraph on top of Prometheus queries. This layer fetches metrics, applies reasoning, and produces human-friendly alerts or triggers actions.

LangChain Components

  • Prometheus Retriever: Python wrapper around PromQL queries.
  • LLMChain: Summarizes and explains anomalies.
  • Tool Nodes: Custom nodes for querying metrics and writing alerts.

LangGraph Workflow

from langgraph.graph import StateGraph, END
from langchain_openai import ChatOpenAI
from prometheus_api_client import PrometheusConnect

# Initialize LLM and Prometheus
llm = ChatOpenAI(model="gpt-4.1")
prom = PrometheusConnect(url="http://localhost:9090", disable_ssl=True)

# Node 1: Query Prometheus
def query_metrics(state):
    cpu_usage = prom.custom_query(query='100 - (avg by(instance)(rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)')
    state["cpu_usage"] = cpu_usage
    return state

# Node 2: Analyze with LLM
def analyze_metrics(state):
    prompt = f"System metrics: {state['cpu_usage']}. Summarize performance issues."
    state["analysis"] = llm.predict(prompt)
    return state

# Node 3: Generate Action
def decide_action(state):
    if "high" in state["analysis"].lower():
        state["action"] = "Send alert to Grafana/Slack"
    else:
        state["action"] = "No anomaly"
    return state

# Build graph
graph = StateGraph()
graph.add_node("query", query_metrics)
graph.add_node("analyze", analyze_metrics)
graph.add_node("action", decide_action)

graph.set_entry_point("query")
graph.add_edge("query", "analyze")
graph.add_edge("analyze", "action")
graph.add_edge("action", END)

monitor_graph = graph.compile()

Run it:

result = monitor_graph.invoke({})
print(result["analysis"], result["action"])

3. Integration with Grafana

  • Push AI-detected anomalies into Prometheus (pushgateway) or Grafana Loki (logs).
  • Grafana panels visualize both raw metrics and LLM summaries.
  • Grafana Alertmanager can forward alerts enriched with AI context.

Example: push anomaly score back to Prometheus:

import requests
requests.post("http://pushgateway:9091/metrics/job/ai_analysis", data="""
ai_anomaly_score 0.87
""")

4. Extended Workflow

  • Performance baseline learning: Use LangGraph to compare current metrics vs historical trends.
  • Root-cause suggestions: Chain logs + metrics into the LLM for hypothesis generation.
  • A2A orchestration: One agent monitors infra, another interprets business KPIs (response time, churn), and they exchange summaries via LangGraph.

✅ End result:

  • Prometheus + Grafana = metrics & dashboards
  • LangChain + LangGraph = reasoning, summarization, anomaly interpretation, automated responses