Let’s design a hybrid workflow that combines classic monitoring (Prometheus + Grafana) with AI-driven orchestration (LangChain + LangGraph). This will give you a system that not only collects metrics but can also reason about anomalies, generate insights, and trigger actions.
1. Core Monitoring Stack
Prometheus
- Scrapes metrics from your services, infrastructure, and exporters.
- Stores them in a time-series database.
- Provides alerting rules (via Alertmanager).
Example prometheus.yml
scrape config:
scrape_configs:
- job_name: 'node_exporter'
static_configs:
- targets: ['localhost:9100']
- job_name: 'app_service'
static_configs:
- targets: ['app:8080']
Grafana
- Connects to Prometheus as a data source.
- Provides dashboards for CPU, memory, request latency, error rates, etc.
- Can visualize anomaly scores pushed from LangGraph.
Example datasource config (provisioning/datasources/datasource.yml
):
apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
access: proxy
url: http://prometheus:9090
2. AI Orchestration Layer
We insert LangChain + LangGraph on top of Prometheus queries. This layer fetches metrics, applies reasoning, and produces human-friendly alerts or triggers actions.
LangChain Components
- Prometheus Retriever: Python wrapper around PromQL queries.
- LLMChain: Summarizes and explains anomalies.
- Tool Nodes: Custom nodes for querying metrics and writing alerts.
LangGraph Workflow
from langgraph.graph import StateGraph, END
from langchain_openai import ChatOpenAI
from prometheus_api_client import PrometheusConnect
# Initialize LLM and Prometheus
llm = ChatOpenAI(model="gpt-4.1")
prom = PrometheusConnect(url="http://localhost:9090", disable_ssl=True)
# Node 1: Query Prometheus
def query_metrics(state):
cpu_usage = prom.custom_query(query='100 - (avg by(instance)(rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)')
state["cpu_usage"] = cpu_usage
return state
# Node 2: Analyze with LLM
def analyze_metrics(state):
prompt = f"System metrics: {state['cpu_usage']}. Summarize performance issues."
state["analysis"] = llm.predict(prompt)
return state
# Node 3: Generate Action
def decide_action(state):
if "high" in state["analysis"].lower():
state["action"] = "Send alert to Grafana/Slack"
else:
state["action"] = "No anomaly"
return state
# Build graph
graph = StateGraph()
graph.add_node("query", query_metrics)
graph.add_node("analyze", analyze_metrics)
graph.add_node("action", decide_action)
graph.set_entry_point("query")
graph.add_edge("query", "analyze")
graph.add_edge("analyze", "action")
graph.add_edge("action", END)
monitor_graph = graph.compile()
Run it:
result = monitor_graph.invoke({})
print(result["analysis"], result["action"])
3. Integration with Grafana
- Push AI-detected anomalies into Prometheus (
pushgateway
) or Grafana Loki (logs). - Grafana panels visualize both raw metrics and LLM summaries.
- Grafana Alertmanager can forward alerts enriched with AI context.
Example: push anomaly score back to Prometheus:
import requests
requests.post("http://pushgateway:9091/metrics/job/ai_analysis", data="""
ai_anomaly_score 0.87
""")
4. Extended Workflow
- Performance baseline learning: Use LangGraph to compare current metrics vs historical trends.
- Root-cause suggestions: Chain logs + metrics into the LLM for hypothesis generation.
- A2A orchestration: One agent monitors infra, another interprets business KPIs (response time, churn), and they exchange summaries via LangGraph.
✅ End result:
- Prometheus + Grafana = metrics & dashboards
- LangChain + LangGraph = reasoning, summarization, anomaly interpretation, automated responses