What is LangChain?
LangChain is a powerful framework designed to streamline the integration of Large Language Models (LLMs) into applications. It offers tools and abstractions for working with LLMs in a structured, modular way, making it easier to build, manage, and optimize applications that rely on AI models.
Why Do We Need LangChain?
- Orchestration:
- Building AI applications often involves multiple steps: prompting, chaining responses, interacting with external systems, etc. LangChain simplifies this by providing a structured way to combine these steps.
- Complex Query Management:
- Many applications require combining LLM responses with other data (e.g., APIs, databases). LangChain facilitates this by offering tools to connect LLMs with external data sources.
- Reusability and Modularity:
- LangChain provides modular components (chains, agents, tools) that can be reused or customized across different applications.
- Optimization and Debugging:
- Debugging LLM workflows and optimizing prompts is challenging. LangChain provides tools like verbose logging and step-by-step execution tracing to assist developers.
- Seamless External Integration:
- Applications often need LLMs to work alongside external knowledge bases, APIs, and memory systems. LangChain abstracts this complexity.
Core Components of LangChain
- PromptTemplates:
- Helps structure and format inputs to the LLM.
- Example: Filling placeholders in a prompt with dynamic data.
- Chains:
- Chains are sequences of operations that process user input through one or more steps.
- Example: A question-answering system combining document retrieval and LLM inference.
- Agents:
- Agents enable LLMs to act autonomously by deciding which tools to use and when.
- Example: An agent using APIs or querying a database dynamically.
- Tools:
- These are external utilities the agent can invoke.
- Example: A calculator, web scraper, or custom API.
- Memory:
- Enables LLMs to maintain conversational context over time.
- Example: Remembering user preferences or prior interactions.
- Retrieval-Augmented Generation (RAG):
- Combines LLMs with external knowledge retrieval systems like vector databases.
- Example: Summarizing company policies stored in a database.
Use Cases for LangChain
- Chatbots:
- Creating intelligent chatbots capable of dynamic, multi-turn conversations.
- Question Answering:
- Answering questions based on external knowledge bases, documents, or APIs.
- Code Assistants:
- Assisting developers by fetching and interpreting code-related information.
- Automated Agents:
- Building agents that interact autonomously with external systems (e.g., sending emails, querying databases).
- Personalized Recommendations:
- Tailoring responses based on user memory and historical interactions.
How to Use LangChain
1. Installation
pip install langchain openai
2. Basic Example: Simple Chain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# Initialize LLM
llm = OpenAI(model="text-davinci-003", temperature=0.5)
# Create a prompt template
prompt = PromptTemplate(
input_variables=["product"],
template="What are some creative marketing strategies for a {product}?"
)
# Create a chain
chain = LLMChain(llm=llm, prompt=prompt)
# Run the chain
response = chain.run(product="smartphone")
print(response)
3. Advanced Example: Using Agents and Tools
from langchain.agents import load_tools, initialize_agent
from langchain.llms import OpenAI
# Initialize LLM
llm = OpenAI(model="text-davinci-003")
# Load some tools (calculator, etc.)
tools = load_tools(["calculator"])
# Initialize an agent with tools
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
# Run the agent
response = agent.run("What is the square root of 256?")
print(response)
4. Adding Memory for Context
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from langchain.llms import OpenAI
# Initialize LLM
llm = OpenAI(model="text-davinci-003")
# Add memory
memory = ConversationBufferMemory()
# Create a conversation chain
conversation = ConversationChain(llm=llm, memory=memory, verbose=True)
# Simulate a conversation
conversation.run("Hi, my name is Alex.")
conversation.run("What's my name?")
5. Retrieval-Augmented Generation (RAG)
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
# Prepare documents
docs = ["Document 1 content", "Document 2 content", "Document 3 content"]
# Create embeddings and vector store
embeddings = OpenAIEmbeddings()
vector_store = FAISS.from_texts(docs, embeddings)
# Initialize retriever
retriever = vector_store.as_retriever()
# Create an LLM-based QA chain with retriever
llm = OpenAI(model="text-davinci-003")
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
# Ask a question
response = qa_chain.run("What is in Document 1?")
print(response)
Why LangChain Stands Out
- Modularity: Easy to combine and reuse components.
- Ease of Use: Simplifies complex workflows.
- Extensibility: Supports custom tools, memory systems, and integrations.
- Efficiency: Optimized for large-scale AI applications.
LangChain bridges the gap between LLM capabilities and real-world applications, enabling developers to build smarter, more responsive systems with less effort. If you’re working with LLMs, it’s a must-have tool to streamline development and improve performance.
Langchain related applications (with huggingface)
- Creating a chatbot using Alpaca native and LangChain:
- Flask Streaming Langchain Example:
- an intial pass at using stablelm with langchain:
- Using RWKV in langchain:
- Prompt Engineering with Large Language Models.ipynb:
- Minimal example of gradio + HF language model:
- Experiment with Langchain, OpenAI, and Datastax AstraDB …:
- LangChain agent with Google Search and Math Capability:
- llmops-with-mlflow.ipynb:
- langchain_llamacpp_natural_fun…:
- Hybrid Search with LangChain-Milvus:
- You probably don’t know how to do Prompt Engineering:
- [T4]Langchain_with_LLaMa2_13b_retrievalqa.ipynb:
- 3.0_LangChain-Llama2_AmazonMobileReview.ipynb:
- Langchain_Llama2_Lab_Demo.ipynb:
- GPT4all-langchain-demo.ipynb:
- Deploying LLaMA 3 70B with AirLLM and Gradio on …:
- RAG Chatbot using Confluence:
- create and query a gpt_index using the documentation …:
- Prompt Engineering with Large Language Models.ipynb:
- hynky1999’s gists:
- llm-tool.md:
- PROMPT Engineering tecnhiques.md:
- Create a Chatbot using Hugging Face and Streamlit:
- HF+ZeroGPU+OpenAI-Prox+Gradio Operation:
- Daethyra:
- Changed Paths · GitHub:
- Streamlining Literature Reviews with Paper QA and Zotero:
- Daethyra:
- MichelNivard’s gists:
- AI/ML Toolkit:
- modelscope/agentscope. Continue this conversation at …:
- svpino’s gists:
- mneedham’s gists:
- privateGPT_for_QuantumCompu…:
- Pavel Shibanov shibanovp:
- Nilesh Prasad nileshprasad137:
- python273’s gists:
- hongvincent’s gists:
- Unlocking the Power of Claude Projects:
- Open-Form Q&A - GPT-Neo 2.7B:
- Spartee’s gists · GitHub:
- penningjoy’s gists:
- Image Recognition for Googley Eyes:
- Faizan Shaikh faizankshaikh:
- cboettig’s gists:
- afaiyaz006’s gists:
- 23.04.23 - aifactory 김태영 - LangChain 시작하기 (2).ipynb:
- 23.04.23 - aifactory 김태영 - LangChain 시작하기 (2).ipynb:
- mapmeld’s gists · GitHub:
- huggingface + KoNLPy:
- CacheRadar - Sheet1.csv · GitHub:
- Mistobaan’s gists:
- janduplessis883’s gists:
- LLM notes · GitHub:
- OpenDevin Installation:
- Using Bonito v1 on Amazon SageMaker to generate …:
- inspirit941’s gists:
- jiweiqi’s gists · GitHub:
- Running LLaMAs models locally on Apple Silicon M1/M2 …:
- bigsnarfdude’s gists:
- Abonia1’s gists:
- sroecker’s gists:
- Updated 2024-12-04 · GitHub:
- Niko Gamulin nikogamulin:
- GSoC Final Report.md:
- svpino’s gists:
- Streamlining Literature Reviews with Paper QA and Zotero:
- esenthil2018’s gists:
- OpenDevin Installation:
- lism’s gists · GitHub:
- pakkinlau’s gists:
- RichardScottOZ:
- blackwhites’s gists · GitHub:
- YunDa Tsai j40903272:
- aaronblondeau:
- virattt’s gists:
- ji1kang’s gists:
- AWS re:Invent 2024 Sessions:
- inspirit941’s gists:
- wey-gu’s gists:
- mrocklin’s gists · GitHub:
- nbx-apprenticeship.md:
- translate_docs.ipynb:
- Are LLM frameworks the new JavaScript …:
- RAGAS: Automated Evaluation of Retrieval Augmented …:
- IsisChameleon:
- pypi-download-stats-2024-03-01.json:
- Changed Paths · GitHub:
- gist.txt · GitHub:
- On-premise LLM deployments and options:
- Zero-to-Hero-in-Data-Science.ipynb:
- granite3-dense.ipynb:
- Changed Paths · GitHub:
- xpzouying’s gists · GitHub:
- Changed Paths · GitHub:
- rsimd’s gists · GitHub:
- llvm16-bump.md:
- Changed Paths · GitHub: